紫影基地

 找回密码
 立即注册
查看: 449|回复: 0

一次SQL查询优化原理分析(900W+数据,从17s到300ms)

[复制链接]
阅读字号:

145

主题

148

帖子

961

积分

超级版主

Rank: 8Rank: 8

积分
961
发表于 2021-10-13 19:53:25 | 显示全部楼层 |阅读模式
本帖最后由 天行健 于 2021-10-13 19:55 编辑

               

有一张财务流水表,未分库分表,目前的数据量为9555695,分页查询使用到了limit,优化之前的查询耗时16 s 938 ms (execution: 16 s 831 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时347 ms (execution: 163 ms, fetching: 184 ms);

操作:查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;

原理:
1、减少回表操作;
2、可参考《阿里巴巴Java开发手册(泰山版)》第五章-MySQL数据库、(二)索引规约、第7条:
【推荐】利用延迟关联或者子查询优化超多分页场景。
说明: MySQL并不是挑过offeset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的底下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。
正例: 先快速定位需要获取的id段,然后再关联:
SELECT a.* FROM 表1 a,(select id from 表1 where 条件 LIMIT 100000,20) b where a.id = b.id;

sql
  • -- 优化前SQL
  • SELECT  各种字段FROM `table_name`
  • WHERE 各种条件
  • LIMIT 0,10;
sql
  • -- 优化后SQL
  • SELECT  各种字段
  • FROM `table_name` main_tale
  • RIGHT JOIN
  • (
  • SELECT  子查询只查主键
  • FROM `table_name`
  • WHERE 各种条件
  • LIMIT 0,10;
  • ) temp_table ON temp_table.主键 = main_table.主键

MySQL 用 limit 为什么会影响性能?

一,前言

首先说明一下MySQL的版本:

sql
  • mysql> select version();
  • +-----------+
  • | version() |
  • +-----------+
  • | 5.7.17    |
  • +-----------+
  • 1 row in set (0.00 sec)

表结构:

sql
  • mysql> desc test;
  • +--------+---------------------+------+-----+---------+----------------+
  • | Field  | Type                | Null | Key | Default | Extra          |
  • +--------+---------------------+------+-----+---------+----------------+
  • | id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |
  • | val    | int(10) unsigned    | NO   | MUL | 0       |                |
  • | source | int(10) unsigned    | NO   |     | 0       |                |
  • +--------+---------------------+------+-----+---------+----------------+
  • 3 rows in set (0.00 sec)

id为自增主键,val为非唯一索引。

灌入大量数据,共500万:

sql
  • mysql> select count(*) from test;
  • +----------+
  • | count(*) |
  • +----------+
  • |  5242882 |
  • +----------+
  • 1 row in set (4.25 sec)

我们知道,当limit offset rows中的offset很大时,会出现效率问题:

sql
  • mysql> select * from test where val=4 limit 300000,5;
  • +---------+-----+--------+
  • | id      | val | source |
  • +---------+-----+--------+
  • | 3327622 |   4 |      4 |
  • | 3327632 |   4 |      4 |
  • | 3327642 |   4 |      4 |
  • | 3327652 |   4 |      4 |
  • | 3327662 |   4 |      4 |
  • +---------+-----+--------+
  • 5 rows in set (15.98 sec)

为了达到相同的目的,我们一般会改写成如下语句:

sql
  • mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
  • +---------+-----+--------+---------+
  • | id      | val | source | id      |
  • +---------+-----+--------+---------+
  • | 3327622 |   4 |      4 | 3327622 |
  • | 3327632 |   4 |      4 | 3327632 |
  • | 3327642 |   4 |      4 | 3327642 |
  • | 3327652 |   4 |      4 | 3327652 |
  • | 3327662 |   4 |      4 | 3327662 |
  • +---------+-----+--------+---------+
  • 5 rows in set (0.38 sec)

时间相差很明显。

为什么会出现上面的结果?我们看一下select * from test where val=4 limit 300000,5;的查询过程:

查询到索引叶子节点数据。
根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。

类似于下面这张图:\\

ww123.jpg


\像上面这样,需要查询300005次索引节点,查询300005次聚簇索引的数据,最后再将结果过滤掉前300000条,取出最后5条。MySQL耗费了大量随机I/O在查询聚簇索引的数据上,而有300000次随机I/O查询到的数据是不会出现在结果集当中的。

肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要5次随机I/O,类似于下面图片的过程:


ww123123.jpg


其实我也想问这个问题。

证实

下面我们实际操作一下来证实上述的推论:

为了证实select * from test where val=4 limit 300000,5是扫描300005个索引节点和300005个聚簇索引上的数据节点,我们需要知道MySQL有没有办法统计在一个sql中通过索引节点查询数据节点的次数。我先试了Handler_read_*系列,很遗憾没有一个变量能满足条件。

我只能通过间接的方式来证实:

InnoDB中有buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个sql,来比较buffer pool中的数据页的数量。预测结果是运行select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool中的数据页的数量远远少于select * from test where val=4 limit 300000,5;对应的数量,因为前一个sql只访问5次数据页,而后一个sql访问300005次数据页。

select * from test where val=4 limit 300000,5

sql
  • mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;Empty set (0.04 sec)

可以看出,目前buffer pool中没有关于test表的数据页。

sql
  • mysql> select * from test where val=4 limit 300000,5;
  • +---------+-----+--------+
  • | id      | val | source |
  • +---------+-----+--------+|
  • 3327622 |   4 |      4 |
  • | 3327632 |   4 |      4 |
  • | 3327642 |   4 |      4 |
  • | 3327652 |   4 |      4 |
  • | 3327662 |   4 |      4 |
  • +---------+-----+--------+
  • 5 rows in set (26.19 sec)
  • mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
  • +------------+----------+
  • | index_name | count(*) |
  • +------------+----------+
  • | PRIMARY    |     4098 |
  • | val        |      208 |
  • +------------+----------+2 rows in set (0.04 sec)

可以看出,此时buffer pool中关于test表有4098个数据页,208个索引页。

select * from test a inner join (select id from test where val=4 limit 300000,5) ;为了防止上次试验的影响,我们需要清空buffer pool,重启mysql。

plain
  • mysqladmin shutdown
  • /usr/local/bin/mysqld_safe &
sql
  • mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
  • Empty set (0.03 sec)

运行sql:

sql
  • mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
  • +---------+-----+--------+---------+
  • | id      | val | source | id      |
  • +---------+-----+--------+---------+
  • | 3327622 |   4 |      4 | 3327622 |
  • | 3327632 |   4 |      4 | 3327632 |
  • | 3327642 |   4 |      4 | 3327642 |
  • | 3327652 |   4 |      4 | 3327652 |
  • | 3327662 |   4 |      4 | 3327662 |
  • +---------+-----+--------+---------+
  • 5 rows in set (0.09 sec)
  • mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
  • +------------+----------+
  • | index_name | count(*) |
  • +------------+----------+
  • | PRIMARY    |        5 |
  • | val        |      390 |
  • +------------+----------+
  • 2 rows in set (0.03 sec)

我们可以看明显的看出两者的差别:第一个sql加载了4098个数据页到buffer pool,而第二个sql只加载了5个数据页到buffer pool。符合我们的预测。也证实了为什么第一个sql会慢:读取大量的无用数据行(300000),最后却抛弃掉。
而且这会造成一个问题:加载了很多热点不是很高的数据页到buffer pool,会造成buffer pool的污染,占用buffer pool的空间。  遇到的问题

为了在每次重启时确保清空buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdown和innodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时dump出buffer pool中的数据和在数据库开启时载入在磁盘上备份buffer pool的数据。

            

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|紫影基地

GMT+8, 2025-1-27 10:40 , Processed in 0.127314 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表